0=-16t^2+180t-420

Simple and best practice solution for 0=-16t^2+180t-420 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+180t-420 equation:



0=-16t^2+180t-420
We move all terms to the left:
0-(-16t^2+180t-420)=0
We add all the numbers together, and all the variables
-(-16t^2+180t-420)=0
We get rid of parentheses
16t^2-180t+420=0
a = 16; b = -180; c = +420;
Δ = b2-4ac
Δ = -1802-4·16·420
Δ = 5520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5520}=\sqrt{16*345}=\sqrt{16}*\sqrt{345}=4\sqrt{345}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-4\sqrt{345}}{2*16}=\frac{180-4\sqrt{345}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+4\sqrt{345}}{2*16}=\frac{180+4\sqrt{345}}{32} $

See similar equations:

| 8x+6=2x+37 | | 13x=(4+x)2–3x–(4–x)2 | | 15x+6=-4 | | (3x+1)^=49 | | (k+2)÷3=(k-4)÷5 | | 6x+(-13)=5 | | (k+2)÷3=(k-4(÷5 | | 2.14x-12.16=-5.76 | | 6x(-13)=5 | | x/3.1=-5.6 | | 3(9-3x)=54 | | 4x-17=21 | | 7x15-9x=5 | | 9x=8+-1 | | 7(-6x+7)=-329 | | 7(8+6x)=-364 | | 6x+7-3x-16=180 | | -31-(3x-6)=10 | | -6(-8+3x)=-60 | | (x+7)=(2x-6) | | 0.4t+0.2=-0.4+2 | | -2x+2+4x=10 | | 2x-30=3(5-x | | 3(x-5)-16=2(x-8)=4 | | (2x+1)=27 | | 4x-8+6x=-78 | | 8.31=1.3y-5.6 | | 4+4x+7x=-7 | | 7x+1+3x+19=180 | | x-6=186 | | 2x+15=180-75 | | 10m+58=180 |

Equations solver categories